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Abstracts 
The Cancer Genome Atlas (TCGA) datasets enable integrative analysis of multi-omics alterations in cancer, offering insights into 

glioblastoma multiforme (GBM) mechanisms. Here, we employ network analysis to identify molecular pathways and candidate drivers 
in GBM. Functional modules derived from edge-betweenness clustering of a protein interaction network, built from altered genes, 
revealed enrichment in both established and novel cancer-associated pathways in GBM. Among 72 genes with high-impact deleterious 

mutations (≥ 3 samples), several (for example, fatty acid synthases ACACA and ACACB) represent novel candidates in GBM, though 
previously implicated in other cancers. Additionally, 89 genes in copy number-altered regions were prioritized for functional relevance 
based on network interactions. These findings highlight novel genes and pathways with potential roles in GBM pathogenesis, providing 

candidates for mechanistic studies and targeted therapies.  
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1.0 Introduction 

Cancer arises from genomic and epigenomic alterations, such as 

mutations, copy number changes, dysregulated gene 

expression, and methylation, that confer selective advantages 

enabling uncontrolled proliferation, immune evasion, and 

metastasis. Identifying the molecular mechanisms driving these 

processes is critical for developing targeted therapies. 

Traditionally, driver genes are discovered through frequency-

based methods like MutSig (Lawrence et al., 2013) and GISTIC 

(Beroukhim et al., 2007), which prioritize recurrently altered 

genes. However, these approaches often overlook infrequent 

drivers that contribute to tumorigenesis.  

An alternative strategy employs network biology, integrating 

multi-omics data to identify functional modules within protein 

interaction networks (Wu et al., 2010; Cerami et al., 2010). This 

approach captures synergistic effects of diverse alterations, 

offering a systems-level view of cancer pathways. Yet, its 

efficacy hinges on the quality of interaction data and the criteria 

for selecting altered genes.  

Glioblastoma multiforme (GBM), a WHO grade IV glioma, 

exemplifies the urgent need for deeper mechanistic insights. 

Despite standard therapies, GBM remains incurable, with a 

median survival of 14.5 months (Hegi et al., 2005). While 

pathways such as PI3K/AKT, RTK signaling, and cell cycle 

regulation are frequently altered (CGARN, 2008, Wu et al., 2010, 

Cerami et al., 2010), emerging evidence suggests additional 

mechanisms contribute to its pathogenesis (Lino et al., 2010; 

Liang et al., 2010).  

Here, we present an integrative network analysis of GBM multi-

omics data to achieve three objectives. First, we identified 

functional modules enriched for known and novel cancer 

pathways using edge-betweenness clustering of a protein 

network constructed from mutated and differentially expressed 

genes. Second, we prioritized putative drivers, including rare, 

mutated genes and copy number-altered genes interacting with 

network modules. 

By bridging genomic, transcriptomic, and network-level 

insights, this study uncovers novel therapeutic targets and 

pathways, advancing precision oncology for GBM.  

 

2.0 Materials and methods 

2,1 Generation of gene-centric expression data 

Gene expression data for 529 glioblastoma multiforme (GBM) 

and 10 non-neoplastic brain samples were obtained from the 

Cancer Genome Atlas (TCGA) data portal. These data were 

profiled using the Affymetrix HT HG-U133A platform. To 

generate gene-centric expression data, we followed established 

methods from TCGA (2008) and Verhaak et al. (2011). The 

probe sequences from the HT HG-U133A platform were mapped 

to a database comprising RefSeq version 41 and GenBank 178 

complete coding sequences using SpliceMiner. Only perfect 

matches were considered, and probes mapping to multiple 

genes were excluded. The resulting output, along with the HT 

HG-U133A chip definition file (CDF), was processed using the 

Makealtcdf function from the affyprobeminer package (Liu, 

2007). Probe sets with fewer than five probes were removed, 

and the resulting alternative CDF was converted into an R 

package using makecdfenv. The generated CDF was then used in 

Robust Multi-array Average (RMA) for normalization and 

summarization of the gene expression data, yielding gene-

centric expression values for 12,161 genes. 

 

2.2 Compilation of low-priority gene sets 

To exclude genes with low functional impact on tumorigenesis 

(e.g., high mutation propensity, sex-specificity, or extracellular 

localization), three gene sets were defined. First, genes encoding 

extracellular proteins were identified using Gene Ontology 

"extracellular" cellular component annotations from the Human 

Protein Reference Database (HPRD) (Keshava et al., 2009). 

Second, genes encoding proteins longer than 4,000 amino acids 

were curated from the Consensus Coding Sequence (CCDS) 

database (Pruitt et al., 2009). Third, sex chromosome-linked 

genes were obtained from the UCSC Genome Browser 

(https://genome.ucsc.edu/). These criteria targeted genes less 

likely to contribute to GBM-driven oncogenic pathways, aligning 

with the disease’s non-sex-specific nature and prioritizing core 

signaling alterations.  

 

2.3 Differential gene expression analysis 

Differential expression analysis was performed on TCGA on ten 

non-neoplastic and GBM tumour samples. Differentially 

expressed genes (DEGs) were identified using the Significance 

Analysis of Microarrays (SAM) method (Tusher et al., 2001) in 

the R package siggenes, with a delta threshold of 6 and FDR-

corrected p-values < 0.00001. Low-priority genes from the first 
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(extracellular proteins) and third (sex chromosome-linked) sets 

were excluded from the final DEG list.  

 

2.4 Scoring functional effects of somatic mutations 

Somatic mutation data for 9505 genes across 282 GBM samples 

were obtained from TCGA (Level 3). After excluding silent 

mutations, functional impact scores were assigned to missense 

mutations using six algorithms (SIFT, Polyphen-2 

[HumDiv/HumVar, LRT, MutationTaster, MutationAssessor, 

FATHMM) from dbNSFP v2.0 (Liu et al., 2001; Ng and Henikoff, 

2009; Kumar et al., 2009; Adzhubei et al., 2010; Ramensky et al., 

2002; Chun and Fay, 2009; Schwarz et al., 2010; Reve et al., 

2011; Schwarz, et al., 2014). A deleteriousness score (0–7) was 

calculated based on the number of algorithms predicting 

functional impact. Frameshift, nonsense, splice-site, and 

translation start-site mutations were assigned the maximum 

score (7). Genes in low-priority sets (extracellular proteins, sex 

chromosome-linked) were excluded. 

 

2.5 Identification of Genes in Copy Number-Altered Regions 

Copy number data for 470 GBM samples (HG-CGH-244A/HG-

CGH-415K platforms) were downloaded from TCGA (Level 3). A 

custom Python script identified chromosomal segments with 

log2 signal ratios ≤ -1.2 (homozygous deletion) or ≥ 1.2 (high-

level amplification) and mapped these to hg18 gene coordinates 

from UCSC Genome Browser (https://genome.ucsc.edu/). 

Genes were included if their coordinates overlapped, enclosed, 

or partially intersected (≥ 25% of one end) with altered 

segments. Low-priority genes were filtered out. 

 

2.6 Intracellular Protein Network Construction and 
Functional Module Detection 
A directed protein interaction network was built using 

Reactome FI version 13 

(http://www.reactome.org/pages/download-data/), 

incorporating experimentally validated functional interactions 

(FIs) and pathway-derived annotations. To ensure specificity, 

interactions were filtered to include only pairs annotated with 

"inhibit" or "activate," exclude terms like "predicted" or 

"express," and retain a confidence score of 1. This yielded 

35,195 unique gene pairs.  

The network was constructed using mutated genes and 

differentially expressed genes (DEGs) that connected at least 

two mutated genes. Modules were identified via edge-

betweenness clustering [109] using the R package igraph. 

Pathway enrichment analysis was performed for each module, 

and networks were visualized with Gephi (Bastian et al., 2009).  

 

2.7 Identification of Rare Mutated Driver Genes and 
Prioritization of Copy Number-Altered Genes  
A Cytoscape file containing GBM pathway interactions 

(https://cbio.mskcc.org/cancergenomics/gbm/pathways/) 

was used to extract genes from frequently altered pathways. 

Samples lacking deleterious mutations (functional impact score 

≥ 3) in these genes were identified, and their network modules 

were screened for genes with high-impact mutations (score ≥ 

5).  

To prioritize functionally relevant genes in copy number-

altered regions, two criteria were applied:  

1. Genes within the intracellular network located in 

regions altered in ≥ 3 samples.  

2. Genes not in the network but interacting with 

network-resident genes, located in regions altered in 

≥ 3 samples. 

2.8 Functional Enrichment Analysis of Network and Co-
Expressed Modules  
Pathway enrichment analysis was performed using a 

hypergeometric test implemented in R. For each module, the 

test evaluated the overrepresentation of KEGG pathway genes 

(from MSigDB) among module genes compared to the full 

microarray gene set. p-values were adjusted for multiple testing 

using the Benjamini-Hochberg method (Benjamini and 

Hochberg, 1995).  

 

3.0 Results and Discussion 

This study provides a comprehensive and integrative analysis of 

high throughput multi-omic data in glioblastoma multiforme. It 

identified functional network modules, rare, mutated driver 

genes, functionally relevant genes in copy number altered 

chromosomal regions, and transcription factors that regulate 

target genes in co-expression modules. It gives an insight into 

the underlying mechanism that drives tumorigenic process in 

GBM. 

 
3.1 The GBM intracellular network reveals cancer-relevant 
modules  
Analysis of 15,137 non-silent mutations (12,985 missense) 

across 282 GBM samples identified 14 modules via edge-

betweenness clustering (Figure 1). Enrichment analysis 

revealed that 11 of the 14 modules were significantly enriched 

for cancer-associated pathways (p ≤ 0.05; Table 1). Notably, 

modules 2, 5, and 16 were altered in 89 %, 39 %, and 42 % of  
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samples, respectively, while modules 2, 5, and 23 exhibited the 

highest copy number alterations.  

Consistent with prior studies, Module 5 contained cell cycle 

regulators CDK2, CCND3, CDKN2A/B/C, and RB1 (KEGG cell cycle 

pathway), aligning with their frequent alterations in GBM 

[3,7,8]. Similarly, PI3K/AKT and RTK signaling pathways were 

enriched in modules with mutation- and copy number-driven 

alterations, corroborating earlier reports (Cerami et al., 2010). 

Focal adhesion and p53 pathways were also recapitulated, 

reflecting findings from network-based analyses of GBM (Wu et 

al., 2010). These results validate the network approach while 

highlighting novel module-level interactions for further 

exploration.  

 

3.2 Novel signalling pathways were overrepresented in GBM 

network modules 

Novel Signaling Pathways Identified in GBM Network Modules  

While traditional studies focusing on candidate genes have 

implicated WNT, NOTCH, TGF-β, and JAK/STAT pathways in 

GBM, their association with high-throughput omics data has 

remained underexplored. In this study, modules 2, 5, 16, and 27 

were significantly enriched (p < 0.05; Table 1) for WNT pathway 

components, with defects in this pathway identified as causative 

drivers of GBM. This finding bridges a gap between candidate-

driven discoveries and systems-level omics analysis, 

highlighting the utility of network-based approaches to uncover 

pathway-level dysregulation in GBM. 

 
3.3 Deleterious Mutations in GBM Network Modules Reveal 
Novel and Known Drivers  
Analysis of deleterious mutations in network modules identified 

15 genes previously reported by both frequency-based (CGARN, 

2008; Brennan et al., 2013) and network-based (Cerami et al., 

2010) studies, including NF1 (frequency-based only) and 

IL18RAP (Table 2). Module 2 contained all major known drivers 

(PTEN, TP53, EGFR, NF1, PIK3CA, PIK3R1, RB1, PDGFRA), with ≥ 

90 % of their mutations classified as deleterious. Notably, this 

module also harboured genes such as TEK and KDR, encoding 

angiogenesis regulators angiopoietin-1 and VEGF receptors, 

previously linked to copy number alterations (Cerami et al., 

2010) but now shown to carry functionally impactful mutations.  

 

 

 

 

 

 

 

 

 

TEK activation is associated with astrocytoma progression 

(Zadeh et al., 2004), while KDR variants correlate with rectal . 

TEK activation is associated with astrocytoma progression 

(Zadeh et al., 2004), while KDR variants correlate with rectal 

cancer survival (Slattery et al., 2014).  

Additional cancer-associated genes in Module 2 included MTOR 

(Guertin and Sabatini, 2007; Matsubara et al., 2013), PAK4 

(Wong et al., 2013; Minden, 2012; Tabusa et al., 2013), TYK2 

(Zhang et al., 2011; Bel et al., 2013; Sanda et al., 2013), and 

PTPN11 (Chan et al., 2008). Other modules contained 

established cancer genes: checkpoint kinases CHEK1/2 

(Nevanlinna and Bartek, 2006; Bartek et al., 2003), tumour 

suppressors TP63 (Flores, 2007; Costanzo et al., 2014; Wei et al., 

2011) and TERT (Heidenreich et al., 2014; Vinagre et al., 2013), 

and chromatin remodeler EP300 (Gayther et al., 2000; Kim et al., 

2013; Wallberg et al., 2003; Spin et al., 2010). Nitric oxide 

synthases NOS2 and NOS1, implicated in pro-tumorigenic 

processes like angiogenesis (Fukumura et al., 2006; Williams 

and Djamgoz, 2005), were also mutated, aligning with studies 

linking nitric oxide to tumour progression.  

 
3.4 Non-Muscle Myosin and Metabolic Genes Harbor 
Deleterious Mutations in GBM  
Module 10 contained five non-muscle myosin genes (MYH4, 

MYH6, MYH8, MYH13, MYH15) with deleterious mutations in ≥ 3 

samples (Table 2). Non-muscle myosins regulate critical cancer 

processes, including proliferation, immune evasion, 

angiogenesis, and metastasis (Ouderkirk and Krendel, 2014).  

Module 9 was enriched for metabolic genes, including ACACA 

and ACACB (acetyl-CoA carboxylases mediating fatty acid 

synthesis), PCK1 (a gluconeogenesis regulator), and SLC2A1  

 

 

 
 

Figure 1: A: The intracellular GBM network. Genes in yellow were mutated genes, and genes in green were non-mutated differentially 
expressed genes. B: Modules identified in the GBM network. Genes with the same colour are in the same module. Only modules with at least 5 
genes are shown. 
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Table 1: Alteration types and KEGG pathway enrichment of GBM network modules 
Module # 

genes 
# samples with 
mutation in 
modules  
n=282 

# sample 
with 
CNV in 
modules 
n=470 

Enriched pathway # genes 
mapped in 
the 
pathways 

1 9 7 4 Regulation of acting cytoskeleton 7 
2 149 251 299 ErbB signalling pathway 35 
    Neurotrophin signalling pathway 37 
    Chemokine signalling pathway 44 
    Focal adhesion 38 
    Glioma 25 
    Insulin signalling pathway 27 
    Regulation of actin cytoskeleton 28 
    VEGF signaling pathway 20 
    JAK/STAT signaling pathway 23 
    Adipocytokine signaling pathway 17 
    MTOR signalling pathway 15 
    Tight junction 18 
    Gap junction 14 
    Apoptosis 13 
    NOD-like receptor signalling pathway 11 
    Phosphatidylinositol signalling system 12 
    Inositol phosphate metabolism 9 
    WNT signaling pathway 11 
3 15 38 3 Homologous recombination 4 
4 11 13 1 Cell cycle 6 
5 60 111 303 Cell cycle 17 
    WNT signalling pathway 13 
    NOTCH signaling pathway 7 
    TGF- signalling pathway 8 
    p53 signalling pathway 5 
    Ubiquitin mediated proteolysis 5 
9 7 21 3 Adipocytokine signalling pathway 6 
    Insulin signalling pathway 6 
    Pyruvate metabolism 3 
10 13 33 19 Tight junction 6 
15 17 43 6 Calcium signalling pathway 11 
    GnRH signalling pathway 9 
    Neurotropin signalling pathway 8 
    Glioma 5 
    Phosphatidylinositol signalling system 5 
    Gap junction 4 
16 89 11 29 Chemokine signalling pathway 21 
    Calcium signalling pathway 16 
    Gap junction 12 
    MAPK signalling pathway 16 
    GnRH signalling pathway 10 
    WNT signalling pathway 10 
    Tight junction 9 
23 21 34 45 DNA replication 13 
    Mismatch repair 7 
    Cell cycle 6 
    Base excision repair 4 
27 14 18 6 WNT signalling pathway 10 
    Pathways in cancer 9 
    NOTCH signalling pathway 4 

Enriched pathways with FDR-corrected p-values < 0.05 are shown 
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Table 2 Putative driver genes* identified in GBM network modules  
Module Drivers identified previously Putative driver genes 
2 PTEN, TP53, EGFR, NF1, PIK3CA, PIK3R1, 

PDGFRA, BRAF, PIK3R2, PIK3CB, IRS1, IL18RAP, 
IGF1R, EPHA3 

KDR, MAP3K1, PTPN11, PLCG1, IL4R, MTOR, FGFR3, 
AMPH, ZAP70, VAV1, TSC2, TLR2, TEK, PRKCD, PRKCB, 
PLCG2, PDGFRB, PAK4, MLLT4, MAP3K7, LPAR3, EPHB2, 
RXRA, PTK2B, PGR, MAP2K3, ITGB4, ITGB2, INSRR, ESR2, 
EPHB1, TYK2, PTPRR, PTPN6, NTRK1, MPL, IFNGR2, 
DNM2, CTTN 

3  SMC3, CHEK2, MDC1, RBBP8, BRCA1 
4  CDC27 
5 RB1 CHD9, TP63, CREBBP, CLOCK, ZFHX3, NFIB, NCOA2, 

FOXG1, CDKN2C, TLE4, PAX3, HIRA, HDAC2, CARM1, 
TERT, RBPJL, EP300, EHMT2, CUL1 

9  ACACB, ACACA, SLC2A1, PCK1 
10  MYH8, MYH13, MYH15, MYH6, MYH4 
15  NOS1, ITPR3, ITPR1, SCN5A, SLC6A3, ITPR2, GRM5, 
16  GRM3, CACNA1S, GRM8, SCN1A, CHRM2, CACNA2D1, 

CACNA1D, CACNA1C, ADCY9, RGS9, NOS3, MAP4K1, 
GNAT3, GABBR2, CACNG3, ADCY2, ADCY1, CHEK1, 
CACNB3, CACNA2D2, CACNA1A, ADCY6 

23  TEX15 MCM7 PPM1D MCM6 
27  FZD10 DVL2 AXIN1 
39  DCC SPTAN1 GZMB 
41  MAP4K3 MAP4K2 CYLD 
63  CPSF1 

*Genes in which over 50 % of the mutations were of high impact and found in at least 3 samples are shown. 
aDriver genes previously identified by frequency-based and/or network-based approaches.  
 
(glucose transporter GLUT1). These findings align with the 

Warburg effect, a hallmark of cancer metabolism, where 

tumours reprogram glucose and lipid pathways to support 

growth (Cairns et al., 2011; Warburg, 1956). Notably, ACACA 

and ACACB mutations suggest dysregulated lipid synthesis as a 

potential therapeutic vulnerability in GBM.  

 

3.5 Infrequently Mutated Genes in Key Pathways 

While GBM is driven by frequent mutations in RTK, PI3K/AKT, 

and cell cycle pathways, we identified 49 rarely mutated genes 

(≤3 samples) in network modules that may contribute to 

tumorigenesis when canonical pathways are intact. Notable 

candidates include ABL1, previously reported in gliomas, with 

one deleterious mutation. Other genes such as DNM2 (a 

regulator of endocytosis), EPHB1 (an Eph receptor tyrosine 

kinase), and LPAR3 (a GPCR promoting metastasis) were 

identified as potential novel drivers. STAT3/5B (JAK/STAT 

signaling), BARD1 (a BRCA1-interacting tumour suppressor), 

and MYC (an oncogenic transcription factor) further exemplify 

cancer-associated genes with rare but functionally impactful 

mutations. ACACB, encoding a fatty acid synthesis enzyme, was 

mutated in seven samples (five deleterious), aligning with 

metabolic reprogramming observed in cancer. These findings 

underscore the importance of rare mutations in pathways like  

 

 

JAK/STAT, Eph signaling, and lipid metabolism, which may 

complement or bypass frequent driver alterations.  

 

3.6 Network-Prioritized Copy Number-Altered Genes  

From 6,107 genes in copy number-altered regions, 89 (altered 

in ≥ 3 samples) were prioritized based on network interactions. 

Known drivers such as EGFR and CDKN2A were confirmed, 

while novel candidates included amplified genes like NAIP (an 

anti-apoptotic protein linked to aggressive breast and prostate 

cancers), DVL3 (a WNT signaling mediator), and SKP1 (a 

component of the SCF ubiquitin ligase complex; Table 3). 

Deletions in PRKG1 (a cGMP-dependent kinase) and CTNNA3 (a 

β-catenin-related tumour suppressor) were also identified. 

These results highlight genes whose copy number changes 

likely contribute to GBM pathogenesis through apoptosis 

evasion, WNT activation, or cell cycle dysregulation.  

 

3.7 Altered Subnetwork Integrates Oncogenic Pathways  

A subnetwork of 238 genes (1,085 interactions) integrated 

major cancer pathways, including MAPK, p53, WNT, RB1, and 

GPCR signaling. Key hubs such as AKT1/3 segregated the 

network, reflecting their central role in promoting proliferation, 

survival, and aggressive progression. This systems-level view 

underscores how genomic alterations converge on critical  
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Table 3 Genes with copy number alterations in at least three samples. 

Gene # samples 
with alterations 

Gene # samples with alterations 

Genes in the network Genes not in the network but have interaction targets in the network 

High-level amplification 

EGFR 210 KIT 35 

CDK4 61 PHKG1 33 

AGAP2 61 DDIT3 33 

PDGFRA 48 NUP107 27 

MDM2 39 MDM4 27 

PIK3C2B 27 FRS2 12 

KDR 21 NAIP 10 

RAP1B 17 CDK6 10 

CLOCK 17 GRB10 8 

EXOC1 15 DYRK2 6 

SKP1 10 CREB5 6 

MET 10 AKT3 6 

PTPRR 9 EIF2B5 5 

CCND2 7 WNK1 5 

PTPRB 7 EPHB3 5 

IRAK3 7 AP2M1 5 

PIK3CA 6 TIMELESS 4 

EIF4G1 5 TFDP1 3 

DVL3 5 SENP2 3 

ACTL6A 5 MAG12 3 

STAT3 3 GNGT1 3 

IRS2 3 GNG11 3 

CACNA1C 3 GCK 3 

AKT1 3 CTNNA2 3 

ADCYAP1R1 3 CCNE1 3 

Homologous Deletion 

CDKN2A 228 PRKG1 12 

CDKN2B 224 FAS 10 

PTEN 38 CTNNA3 6 

TEK 17 PIK3CD 3 

RB1 12 ITPKB 3 

CDKN2C 11 DUSP22 3 

FAF1 11 CREB3L1 3 

HLA-DRB1 8 CHRM4 3 

TP53 5 BLNK 3 

PER3 4   

VAMP3 4   

NFIB 4   

EPHA3 4   

NF1 3   
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oncogenic nodes, reinforcing the utility of network analysis in 
identifying therapeutic targets.  

 

4.0 Conclusion 

Systems-level integration of GBM multi-omics data via network 

analysis identified novel drivers (for example, ACACA, ACACB) 

and pathways (WNT, metabolic reprogramming), extending 

beyond canonical alterations like RTK/PI3K/AKT. Rare 

mutations in genes such as STAT3/5B and copy number 

alterations in NAIP (anti-apoptotic) and DVL3 (WNT signaling) 

reveal underappreciated tumorigenic mechanisms. Central 

oncogenic hubs, including AKT1/3, integrate signaling networks 

and highlight actionable targets for molecularly stratified 

therapies. This work demonstrates the power of network 

biology to decode GBM heterogeneity and prioritize candidates 

for mechanistic studies and therapeutic development. 
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